Keterangan:
• Bobot: 1, 2, 3, ..., n (periode terbaru = n)
• Total bobot = n(n+1)/2
• Data terbaru memiliki pengaruh lebih besar
ES Exponential Smoothing [18.3]
Ft = Ft-1 + α(At-1 - Ft-1)
Keterangan:
• Ft = Forecast periode t
• Ft-1 = Forecast periode sebelumnya
• At-1 = Actual demand periode sebelumnya
• α = Smoothing constant (0 < α < 1)
Interpretasi:
Forecast baru = Forecast lama + α × (Error forecast lama)
HOLT Exponential Smoothing with Trend [18.4-18.6]
[18.4] Ft = FITt-1 + α(At-1 - FITt-1)
[18.5] Tt = Tt-1 + δ(Ft - FITt-1)
[18.6] FITt = Ft + Tt
Keterangan:
• Ft = Smoothed forecast (tanpa trend)
• Tt = Smoothed trend
• FITt = Forecast Including Trend (forecast final)
• α = Smoothing constant untuk level
• δ = Smoothing constant untuk trend
LR Linear Regression
Y = a + bX
b = (nΣXY - ΣXΣY) / (nΣX² - (ΣX)²)
a = (ΣY - bΣX) / n
Keterangan:
• Y = Nilai forecast (demand)
• X = Periode waktu (1, 2, 3, ...)
• a = Intercept (nilai Y ketika X = 0)
• b = Slope (kemiringan garis, trend per periode)
• n = Jumlah data
Interpretasi:
Jika b > 0 → Trend naik | Jika b < 0 → Trend turun
Rumus Error Metrics
Error: et = At - Ft
MAD: Σ|et| / n
MSE: Σ(et)² / n
MAPE: (Σ|et/At|) × 100 / n
Tracking Signal: TS = RSFE / MAD
Interpretasi Tracking Signal:
• |TS| ≤ 4 → Forecast dalam kontrol ✓
• |TS| > 4 → Forecast bias, perlu dikoreksi ✗